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Abstract 
The purpose of this article is to investigate the possibilities of mapping crop condition using 

high resolution (HR) satellite images for Zhiten test site situated in Northeast Bulgaria. The chosen 

satellite images are acquired from multispectral QuickBird-2 and panchromatic WorldView-1 sensors 

on 31/05/2009 and 30/11/2011, respectively. The methodology of this article includes the following 

working stages: 1) applying arable mask from CORINE 2006 land-cover database; 2) conducting 

per-pixel supervised classification using the Maximum Likelihood Classifier (MLC) algorithm for 

crop identification; 3) applying accuracy assessment tool in ERDAS Imagine and deriving accuracy 

totals and Kappa statistics; 4) mapping crop condition using Normalized Difference Vegetation Index 

(NDVI), Renormalized Difference Vegetation Index (RDVI) and Soil Adjusted Vegetation Index 

(SAVI) indices. The overall classification accuracy for the QuickBird-2 image is 90.86 % and overall 

Kappa statistics is 0.8538, while for the WorldView-1 image is 86.71 % and overall Kappa statistics 

is 0.7721. The SAVI shows better sensitivity for the spring crops cultivars with less than 40 % 

vegetation cover. Meanwhile, the NDVI gives good results for winter crops, but saturates at high 

vegetation dencity and gives generalized results for values less than 0.40. Overall RDVI gives better 

crop condition results for winter crops at flowering and grain filling phenophases and spring crops at 

vegetative phase compared to NDVI and SAVI. 

 

 
 1. Introduction1 

Currently a major challenge in agricultural applications is forecasting crop 

production using low and coarse resolution satellite images, while for high 

                                                 
1 Abreviations used: 

MARS – Monitoring Agriculture with Remote Sensing  

LACIE – Large Area Crop Inventory Experiment  

CITARS – Crop Identification Technology Assessment for Remote Sensing 

NDVI – Normalized Difference Vegetation Index 

RDVI – Renormalized Difference Vegetation Index 

SAVI – Soil Adjusted Vegetation Index 
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resolution (HR) satellite images one of the hottest topics is controlling area-based 

subsidies and applying precission agriculture practices amongst others. Satellite 

Remote Sensing (RS) provides synoptic, objective and relatively homogeneous 

data which can be geographically and temporally registered. Therefore, RS is an 

efficient tool for providing standard, high quality information on agriculture, 

evenly over broad-scale territories. The Monitoring Agriculture with Remote 

Sensing (MARS) project of the European Union was established in order to define 

and demonstrate how RS can be used operationally to supplement, interpret, and 

standardize agricultural statistical data provided by conventional techniques 

(Meyer-Roux and Vossen, 1994; De Winne, 2004). Satellite RS techniques have 

been proven to be effective and useful in broad-scale agricultural surveys such as: 

Large Area Crop Inventory Experiment (LACIE) project in the USA and MARS 

project in Europe (Cohen and Shoshany, 2002). Additonally, experiments from 

LACIE and Crop Identification Technology Assessment for Remote Sensing 

(CITARS) projects have also been conducted to demonstrate the capabilities of RS 

for crop inventory and forecasting (MacDonald, 1984; Blaes, 2005).  

Vegetation types can be characterized using their seasonal variations in the 

Normalized Difference Vegetation Index (NDVI) time-series, which include a 

series of images, acquired on weekly or decadal basis and showing the crop 

development dynamics. For example, the winter wheat phenophases, such as 

tillering and flowering as well as harvest, can be successfully identified using 

sensors with different spatial resolution in various band combinations and severe 

ground surveys, including collecting information for defining training samples for 

the supervised classification (Townshend et al. 1991). A number of different 

methods have been developed during the last two decades to discriminate crop 

types using NDVI and data from the Advanced Very High-Resolution Radiometer 

(AVHRR). These methods employ a variety of different approaches including 

temporal profiles of crop phenology manifested in the NDVI (DeFries et al. 1995; 

Reed et al. 1994), and classification of multi-temporal data (Brown et al. 1993; 

Loveland et al. 1995), which can be applied on differently managed crop areas 

worldwide. 

Crop identification during the growing season is a major challenge for 

forecasting crop production as well as for controlling area-based subsidies in the 

European Union member states (Blaes, 2005). The basis for separation one crop 

from another is the supposition that each crop species has a unique visual 

appearance and spectral signature on the image. However, separating these species 

may be difficult because of variations in soil properties, fertilization, pest 

conditions, irrigation practices, planting dates, as well as intercropping, and tillage 

practices (Ryerson et al. 1997), all of which can be adopted in precision farming 

using high quality satellite images. Thus, high-resolution satellite images are the 

key to the above mentioned difficulties.  
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 The purpose of this case study is to investigate the possibilities of mapping 

crop condition using HR satellite images for a test site in North-East Bulgaria, and 

it includes the following tasks: 

(1) Applying arable mask from CORINE 2006 land-cover database;  

(2) Conducting per-pixel supervised classification using the maximum likelihood 

classifier (MLC) algorithm for crop identification;  

(3) Applying accuracy assessment tool in ERDAS Imagine and deriving accuracy 

totals and Kappa statistics;  

(4) Mapping crop condition using NDVI, RDVI and SAVI vegetation indices.  

 
 2. Materials and methods 
 

The study area – part of Zhiten test site is situated in North-East Bulgaria. 

The area represents intensively cultivated area sowed mostly with cereals and 

sunflower. This territory is one of the main agricultural regions of the country. The 

area is part of the European-continental climatic province of the temperate climatic 

belt. Climate is moderately warm with no distinctive dry season. Mean annual air 

temperature is 10.2 °С. The main soil types are chernozems from the zonal ones 

and fluvisols from the azonal ones.  

The major cultivated winter crops (wheat and oilseed rape) and spring 

crops (sunflower and maize) were investigated in the present case study.  

 During the 2010–2011 agricultural season and in particular in the period 

between March–July 2011 four exhaustive field surveys were carried out and 

ground data was collected and organized in a GIS geodatabase. Field data was 

collected in the framework of a project financed by the Belgian Federal Science 

Policy Office (BELSPO) under the PROBA-V Preparatory Programme, with 

acronym – PROAGROBURO (Roumenina et al. 2013). The ground-truth data 

consists of descriptions of the LU/LC types, phenological stages and vegetation 

cover of crops, GPS measurements, and photos. The collected ground data will 

contribute of selecting appropriate training samples for the supervised 

classification on the chosen satellite images. Two satellite images were used in this 

study: a WorldView-1 panchromatic satellite image with 0.50 m spatial resolution, 

acquired on 30/11/2011 and QuickBird-2 multispectral (2.4 m spatial resolution) 

and panchromatic image (with 0.60 m spatial resolution), acquired on 31/05/2009.  

The most commonly used RS vegetation index for agricultural applications 

is the NDVI, expressed by the following formula: NDVI = (NIR-VIS)/(NIR+VIS), 

where VIS and NIR stands for the spectral reflectance measurements acquired in the 

visible red and near-infrared regions, respectively (Rouse et al. 1973). NDVI is 

commonly used measure for the amount of green vegetation. It ranges typically 

from 0.15 (bare soils) to 0.80 (dense vegetation). Additionally, the Renormalized 

Difference Vegetation Index (RDVI), expressed by the following formula: RDVI = 

(NIR-RED)/√(NIR+RED) (Rougean and Breon, 1995) and Soil Adjusted 
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Vegetation Index (SAVI), expressed by the following formula: SAVI = NIR-

RED/NIR+RED+L * (1+L), where L is a constant value equal to 0.5 (Huete, 1988).  

An arable land mask using CORINE data was applied on the QuickBird-2 

and the WorldView-1 images in order to classify only the arable land and reduce 

the occurrence of mixed pixels with other non-arable classes. 

The k-mean and Iterative Self-Organizing Data Analysis (ISODATA) 

clustering algorithms are the most frequently used ones in RS. The ISODATA 

algorithm was selected in this study because it allows different number of clusters, 

while the k-mean algorithm assumes that the number of clusters is known a priori 

(Groom et al. 1996; Garcia-Consuerga and Cisneros, 1999; Yang et al. 1999). 

Unsupervised ISODATA classification with five classes was applied to spectraly 

discriminate the crops and to collect the necessary information in order to delineate 

the training samples for the supervised per-pixel classification. Per-pixel 

supervised classification using the Maximum Likelihood Classifier (MLC) 

algorithm was applied on the arable territories of the test site for both images for 

crop identification purposes. In the MLC procedure, at least 10–15 independent 

training cases per class were used, so that its mean and variance can be estimated. 

Around 160–170 randomly distributed points were used for accuracy assessment 

for both classified images. The multispectral QuickBird-2 satellite image and the 

derived NDVI, RDVI, and SAVI vegetation indices were used to map crop 

condition.  

 
 3. Results and discussions 

 3.1. Applying arable mask from CORINE 2006 land-cover database 
 

An arable land mask using CORINE 2006 land-cover data was applied on 

the QuickBird-2 and the WorldView-1 images in order to classify only the arable 

land and reduce the occurrence of mixed pixels. In Fig. 1 all the land cover classes 

present in the test area are shown and ‘2.1.1. Non-irrigated arable land’ class was 

used to build the mask layer.  

 
3.2 Conducting per-pixel supervised classification using the maximum 

likelihood classifier algorithm for crop identification 
 

The crop identification process was accomplished firstly by conducting 

unsupervised classification (using ISODATA algorithm) with 4-5 classes/clusters 

for both the multispectral QuickBird-2 and panchromatic WorldView-1 images. 

This spectral information was used together with the ground data as an indicator 

where to draw training samples for the supervised classification. 
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Fig. 1. CORINE 2006 land cover classes 

 
The unsupervised classification is traditionally the first step and is 

accommodating the interpretation of the images. Supervised classification using the 

Maximum Likelihood Classifier (MLC) algorithm was applied to the arable land 

images. In the MLC procedure, a key concern is to collect a training set comprising 

of at least 10–30 independent training cases per class per discriminatory variable 

(e.g. band) to allow the formation of a representative description of the class, so 

that its mean and variance can be reasonably estimated (Piper, 1992). For example, 

the spectral response of an agricultural crop class in an image might vary as a 

function of variables such as: the crops growth stage, topographic position, density 

of vegetation cover and health, impact of management activities, substrate 

conditions, and instrument view angle (Foody, 2002). The gathered training set 

from the field data was good enough to make representative training samples for 

the arable land classes. The unsupervised classification in combination with the 

ground information and the derived NDVI image helped to choose and delineate 

appropriate training samples for the supervised classification of the QuickBird-2 

image. The investigated phenological stages based on the image acquisition dates 

are: flowering and grain filling phenophases for winter crops and vegetative phase 

for spring crops for the QuickBird-2 image and emergence phenophase for winter 

crops for the Worldview-1 image.  
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Fig. 2. Per-pixel supervised classification of QuickBird-2 satellite image 

 

 
 

Fig. 3. Per-pixel supervised classification of WorldView-1 satellite image 
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The identified classes and their distribution in percentage for the 

QuickBird-2 satellite image are: good status - winter crops (wheat and oilseed rape 

– 27.72 %),) average status - winter crops (wheat and oilseed rape – 2.77 %); bad 

status - winter crops (wheat and oilseed rape – 6.21 %); stubble fields/bare soil – 

2.19 % and spring crops – sunflower and maize – 43.32 % (Fig. 2), while for the 

Worldview-1 satellite image are: winter crops (wheat and oilseed rape) class; bare 

soil and stubble fields classes (Fig. 3). 

 
 3.3. Applying accuracy assessment tool in ERDAS Imagine and deriving 

accuracy totals and Kappa statistics 
 

Accuracy assessment tool in ERDAS Imagine software was utilized for 

assessing the accuracy of the per-pixel classified images of QuickBird-2 (Fig. 4) 

and WorldView-1 (Fig. 5.). Around 160–170 randomly distributed points were 

assessed for both classified images. Accuracy assessment was applied on the 

WorldView-1 classified image for crop identification using its high spatial 

resolution by applying visual interpretation on the panchromatic and both on the 

unsupervised and supervised classifications in combination with the ground data.  

 

 
 

Fig. 4. Accuracy assessment on WorldView-1 image 
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Fig. 5. Accuracy assessment on QuickBird-2 image 

 
The achieved results on the overall classification accuracy for the 

QuickBird-2 image is 90.86 % and overall Kappa statistics is 0.8538 (Table 1), 

while for the WorldView-1 image is 86.71 % and overall Kappa statistics is 0.7721 

(Table 2).  

 
   Table 1. Accuracy totals for QuickBird-2 

 

Class Name Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy (%) 

User 

Accuracy (%) 

Stubble fields 6 5 5 83.33 100.00 

Bad status – WC 14 8 8 57.14 100.00 

Average status – WC 21 15 14 66.67 93.33 

Good status - WC 44 48 42 95.45 87.50 

Spring crops 90 99 90 100.00 90.91 

   Overall Accuracy – 90.86% Kappa –  0.8538  

 
  Table 2. Accuracy totals for WorldView-1 

 

Class Name Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producers 

Accuracy (%) 

User 

Accuracy (%) 

Stubble fields 19 15 14 73.68 93.33 

Winter crops 73 77 64 87.67 83.12 

Bare soil 81 81 72 88.89 88.89 

   Overall Accuracy – 86.71% Kappa –  0.7721  
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The QuickBird-2 accuracy assessment shows that the class ‘stubble fields’ 

is with high accuracy, the reasons are that the class is easily identified using the 

multispectral data and the precise delineation of the training samples in ERDAS 

Imagine. The class ‘spring crops’, represented by sunflower and maize are with 

high users accuracy 100 %, with 90 reference points used for the accuracy 

assessment. The high user’s accuracy is due to the different crop development 

stage between winter crops and spring crops at the date of image acquisition. The 

accuracy assessment of the winter crops’ classes show that the ‘bad status’ class is 

with 100 % user’s accuracy, while average status and good status classes are with 

93.33 % and 87.50 %, user’s accuracy, respectively. The accuracy assessment of 

the WorldView-1 satellite image shows that the ‘bare soil’ class is representing 

territories which are being prepared to be sown with spring crops in the agricultural 

year 2011-2012 or left for fallow land. The ‘winter crops’ class represents areas 

which have already been sown with winter crops (wheat and rapeseed) and are at 

emergence phenophase. 

 
 3.4. Mapping crop condition using NDVI, RDVI and SAVI indices 
 

Mapping crop condition was accommodated using the multispectral 

QuickBird-2 image and the derived Normalized Difference Vegetation Index 

(NDVI), Renormalized Difference Vegetation Index (RDVI), and Soil Adjusted 

Vegetation Index (SAVI).  

The raw NDVI, RDVI and SAVI indices, respectively (Fig. 6, Fig. 7, and 

Fig. 8) are presented by color ramp (‘no vegetation’ to ‘dense vegetation’). The 

highest values of the indices are for winter wheat followed by oilseed rape, 

sunflower, and maize cultivars. Additionally, the crop condition was mapped using 

the derived NDVI image and applying histogram reclassification. The crop 

condition status classes are the following: (1) ‘bad condition’ and (2) ‘good 

condition’ for winter crops and (3) ‘low NDVI values’ for the other fields, since 

they are already sown with early spring cultivars or left for fallow land (Fig. 9). 

The crop condition was analyzed using interpretation between all the indices and 

comparing them with the collected farmers inquires on applied agricultural 

practices and observed crop development stages for the agricultural fields in the 

test area. The SAVI shows better sensitivity for the spring crops cultivars with less 

than 40 % vegetation cover whereas, the NDVI gives good results for winter crops, 

but saturates at high vegetation densities and gives generalized results for values 

less than 0.40. Overall, the utilized vegetation indices show that RDVI gives crop 

condition assessment results for winter crops at flowering and grain filling 

phenophases and spring crops at vegetative phase compared to NDVI and SAVI. 
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Fig. 6. NDVI image 

 

 
 

Fig. 7. RDVI image of Zhiten test area, Bulgaria 
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Fig. 8. SAVI image 

 

 
 

Fig. 9. Reclassified NDVI image 
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4. Conclusions 
 

 The presented methodology using per-pixel supervised classification for 

crop identification and consequently followed by utilizing the NDVI, RDVI, and 

SAVI indices provides a rapid tool for accurate and valuable crop condition 

information for a better crop management and for immediate adoption in precision 

farming practices. The results show that RDVI vegetation index can better be 

utilized for crop condition assessment at flowering and grain filling phenophases 

for winter cultivars and vegetative phase for spring crops compared to both NDVI 

and SAVI. Furthermore, in near future within the framework of the Copernicus 

Programme and the launch of Sentinel-2 mission, with its more sufficient spectral 

capabilities, will add more possibilities for agriculture related investigations and 

will allow applying new spectral indices for improved retrieval of vegetation 

biophysical parameters. 
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КАРТОГРАФИРАНЕ НА СЪСТОЯНИЕТО НА ЗЕМЕДЕЛСКИ 

КУЛТУРИ ПО СПЪТНИКОВИ ИЗОБРАЖЕНИЯ И ПРОДУКТИ  

ОТ QUICKBIRD-2 И WORLDVIEW-1.  ТОЧНО ЗЕМЕДЕЛИЕ  

ВЪРХУ ЧАСТ ОТ ТЕСТОВИ УЧАСТЪК ЖИТЕН, РАЗПОЛОЖЕН  

В СЕВЕРОИЗТОЧНА БЪЛГАРИЯ 

 
В. Василев, Е. Руменина 

 

Резюме 

 Целта на настоящата статия е да изследва потенциала и 

възможностите на картографирането на състоянието на земеделски култури 

по спътникови изображения с висока пространствена разделителна 

способност върху тестови участък Житен, разположен в Североизточна 

България. Избрани са спътникови изображения от QuickBird-2 и 

WorldView-1, заснети съответно на 31.05.2009 г. и 30.11.2011 г. Методо-

логията включва следните работни етапи: 1) Прилагане на маска от CORINE 

2006 земно покритие; 2) Извършване на пикселно-ориентирана контролирана 

класификация по метода на максимално подобие за разпознаване на 

земеделски култури; 3) Прилагане на инструмент за оценка на точността на 

класификациите и извличане на обща точност и Капа статистика; 4) 

Картографиране на състоянието на земеделските култури по генерирани 

индексни изображения Normalized Difference Vegetation index (NDVI), 

Renormalized Difference Vegetation Index (RDVI) и  Soil Adjusted Vegetation 

Index (SAVI). Общата точност на изображението от QuickBird-2 е 90.86% и с 

Капа статистика от 0.8538, докато това на WorldView-1 има обща точност от 

86.71% и с Капа статистика от 0.7721. SAVI индекса показва по-добра 

чувствителност към пролетните култури с общо площно покритие от под 

40%. От друга страна NDVI индекса дава по-добри резултати при 

картографиране на зимните култури, но индекса се насища при високи 

стойности и гъста растителна покривка. Освен това NDVI индекса дава ниска 

информативност при стойности по-ниски от 0.40. RDVI индекса дава добри 

резултати при картографиране на зимните култури при изкласяване и 

наливане на зърно фенофазите, както и при фазата образуване на съцветия 

при пролетните култури сравнено с индексите NDVI и SAVI.  

 

 


